NUMERICAL SIMULATION OF HIGH-SPEED IMPАCT RESPONSE OF CARBON ARAMID FIBER COMPOSITES

Aiming at the high-speed impact problem of laminates, a three-dimensional finite element impact model consisting of 8 node cohesive element and 8 node solid element is established based on continuous damage mechanies. Based on the Hashin criterion, fiber damage can be well predicted, and puck criter...

Full description

Saved in:
Bibliographic Details
Main Authors: Pl Jun, CUI HongLi, JIA YuanKun
Format: Article
Language:zho
Published: Editorial Office of Journal of Mechanical Strength 2024-04-01
Series:Jixie qiangdu
Subjects:
Online Access:http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2024.02.021
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aiming at the high-speed impact problem of laminates, a three-dimensional finite element impact model consisting of 8 node cohesive element and 8 node solid element is established based on continuous damage mechanies. Based on the Hashin criterion, fiber damage can be well predicted, and puck criterion can well predict matrix damage, therefore. the criterion formed by the mixture of Hashin and puck is compared with the single Hashin failure criterion. It is found that the prediction result of the mixed criterion is closer to the test value. On this basis, the effects of ply angle and impact angle on the impact resistance of laminates are analyzed. The results show that the greater the angle difference between adjacent plies, the greater the incident angle, the stronger the impact resistance of laminates.
ISSN:1001-9669