A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries

Abstract The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)2TeI...

Full description

Saved in:
Bibliographic Details
Main Authors: Shixun Wang, Zhiquan Wei, Hu Hong, Xun Guo, Yiqiao Wang, Ze Chen, Dechao Zhang, Xiaoyu Zhang, Xuyong Yang, Chunyi Zhi
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55385-6
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841544410888667136
author Shixun Wang
Zhiquan Wei
Hu Hong
Xun Guo
Yiqiao Wang
Ze Chen
Dechao Zhang
Xiaoyu Zhang
Xuyong Yang
Chunyi Zhi
author_facet Shixun Wang
Zhiquan Wei
Hu Hong
Xun Guo
Yiqiao Wang
Ze Chen
Dechao Zhang
Xiaoyu Zhang
Xuyong Yang
Chunyi Zhi
author_sort Shixun Wang
collection DOAJ
description Abstract The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)2TeI6, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl- on its surface. This allows for the utilization of inert high-valent tellurium cations, eventually realizing a special eleven-electron transfer mode (Te6+/Te4+/Te2-, I+/I0/I-, and Cl0/Cl-) in suitable electrolytes. The Zn||(BzTEA)2TeI6 battery exhibited a high capacity of up to 473 mAh g-1 Te/I and a large energy density of 577 Wh kg-1 Te/I at 0.5 A g-1, with capacity retention up to 82% after 500 cycles at 3 A g-1. The work sheds light on the design of high-energy batteries utilizing chalcogen-halide perovskite cathodes.
format Article
id doaj-art-0dec73205a9f40df8cda6d2aa145797d
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-0dec73205a9f40df8cda6d2aa145797d2025-01-12T12:31:04ZengNature PortfolioNature Communications2041-17232025-01-011611910.1038/s41467-024-55385-6A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteriesShixun Wang0Zhiquan Wei1Hu Hong2Xun Guo3Yiqiao Wang4Ze Chen5Dechao Zhang6Xiaoyu Zhang7Xuyong Yang8Chunyi Zhi9Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee AvenueDepartment of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee AvenueDepartment of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee AvenueDepartment of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee AvenueDepartment of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee AvenueDepartment of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee AvenueHong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NTKey Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin UniversityKey Laboratory of Advanced Display and System Applications of Ministry of Education Shanghai UniversityDepartment of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee AvenueAbstract The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)2TeI6, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl- on its surface. This allows for the utilization of inert high-valent tellurium cations, eventually realizing a special eleven-electron transfer mode (Te6+/Te4+/Te2-, I+/I0/I-, and Cl0/Cl-) in suitable electrolytes. The Zn||(BzTEA)2TeI6 battery exhibited a high capacity of up to 473 mAh g-1 Te/I and a large energy density of 577 Wh kg-1 Te/I at 0.5 A g-1, with capacity retention up to 82% after 500 cycles at 3 A g-1. The work sheds light on the design of high-energy batteries utilizing chalcogen-halide perovskite cathodes.https://doi.org/10.1038/s41467-024-55385-6
spellingShingle Shixun Wang
Zhiquan Wei
Hu Hong
Xun Guo
Yiqiao Wang
Ze Chen
Dechao Zhang
Xiaoyu Zhang
Xuyong Yang
Chunyi Zhi
A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries
Nature Communications
title A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries
title_full A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries
title_fullStr A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries
title_full_unstemmed A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries
title_short A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries
title_sort tellurium iodide perovskite structure enabling eleven electron transfer in zinc ion batteries
url https://doi.org/10.1038/s41467-024-55385-6
work_keys_str_mv AT shixunwang atelluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT zhiquanwei atelluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT huhong atelluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT xunguo atelluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT yiqiaowang atelluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT zechen atelluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT dechaozhang atelluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT xiaoyuzhang atelluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT xuyongyang atelluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT chunyizhi atelluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT shixunwang telluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT zhiquanwei telluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT huhong telluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT xunguo telluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT yiqiaowang telluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT zechen telluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT dechaozhang telluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT xiaoyuzhang telluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT xuyongyang telluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries
AT chunyizhi telluriumiodideperovskitestructureenablingelevenelectrontransferinzincionbatteries