Freestanding Flexible Carbon Nanofiber Mats for Energy Storage Applications
Carbon nanofiber mats can be applied for diverse energy applications. Usually, they should be freestanding and show sufficient structural stability. Poly(acrylonitrile) (PAN) is often used as the base material for electrospinning due to its high carbon yield during carbonization. Carbonized PAN nano...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Materials Proceedings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-4605/21/1/1 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Carbon nanofiber mats can be applied for diverse energy applications. Usually, they should be freestanding and show sufficient structural stability. Poly(acrylonitrile) (PAN) is often used as the base material for electrospinning due to its high carbon yield during carbonization. Carbonized PAN nanofiber mats, however, may be brittle and break under mechanical load. Here, we report a study of the impact of ZnO and tetraethyl orthosilicate (TEOS) as nanoparticle additives on the stabilization, carbonization and resulting morphology of the respective nanofiber mats. By comparing morphological, mechanical, and chemical properties of these mats, it is shown that carefully tailoring nanoparticular additives and spinning parameters enables the production of flexible freestanding carbon nanofiber mats for possible applications as electrodes in energy storage devices. |
|---|---|
| ISSN: | 2673-4605 |