Effective Antenna Modellings for NF-FF Transformations with Spherical Scanning Using the Minimum Number of Data

Two efficient probe-compensated near-field-far-field transformations with spherical scanning for antennas having two dimensions very different from the third one are here developed. They rely on the nonredundant sampling representations of the electromagnetic fields and on the optimal sampling inter...

Full description

Saved in:
Bibliographic Details
Main Authors: Francesco D'Agostino, Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2011/936781
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two efficient probe-compensated near-field-far-field transformations with spherical scanning for antennas having two dimensions very different from the third one are here developed. They rely on the nonredundant sampling representations of the electromagnetic fields and on the optimal sampling interpolation expansions, and use effective antenna modellings. In particular, an antenna with a predominant dimension is no longer considered as enclosed in a sphere but in a cylinder ended in two half spheres, whereas a surface formed by two circular “bowls” with the same aperture diameter but different lateral bends is adopted to shape an antenna with two predominant dimensions. These modellings are able to fit very well a lot of antennas by properly setting their geometric parameters. It is so possible to remarkably lower the number of data to be acquired, thus significantly reducing the measurement time. Numerical tests assessing the accuracy and the robustness of the techniques are reported.
ISSN:1687-5869
1687-5877