Energy Dependence of Particle Ratios in High Energy Nucleus-Nucleus Collisions: A USTFM Approach

We study the identified particle ratios produced at mid-rapidity (y<0.5) in heavy-ion collisions, along with their correlations with the collision energy. We employ our earlier proposed unified statistical thermal freeze-out model (USTFM), which incorporates the effects of both longitudinal and t...

Full description

Saved in:
Bibliographic Details
Main Authors: Inam-ul Bashir, Rameez Ahmad Parra, Hamid Nanda, Saeed Uddin
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2018/9285759
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the identified particle ratios produced at mid-rapidity (y<0.5) in heavy-ion collisions, along with their correlations with the collision energy. We employ our earlier proposed unified statistical thermal freeze-out model (USTFM), which incorporates the effects of both longitudinal and transverse hydrodynamic flow in the hot hadronic system. A fair agreement seen between the experimental data and our model results confirms that the particle production in these collisions is of statistical nature. The variation of the chemical freeze-out temperature and the baryon chemical potential with respect to collision energies is studied. The chemical freeze-out temperature is found to be almost constant beyond the RHIC energy and is found to be close to the QCD predicted phase-transition temperature suggesting that the chemical freeze-out occurs soon after the hadronization takes place. The vanishing value of chemical potential at LHC indicates very high degree of nuclear transparency in the collision.
ISSN:1687-7357
1687-7365