Shortcut to chemically accurate quantum computing via density-based basis-set correction
Abstract Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations usi...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-11-01
|
| Series: | Communications Chemistry |
| Online Access: | https://doi.org/10.1038/s42004-024-01348-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1846158716664020992 |
|---|---|
| author | Diata Traore Olivier Adjoua César Feniou Ioanna-Maria Lygatsika Yvon Maday Evgeny Posenitskiy Kerstin Hammernik Alberto Peruzzo Julien Toulouse Emmanuel Giner Jean-Philip Piquemal |
| author_facet | Diata Traore Olivier Adjoua César Feniou Ioanna-Maria Lygatsika Yvon Maday Evgeny Posenitskiy Kerstin Hammernik Alberto Peruzzo Julien Toulouse Emmanuel Giner Jean-Philip Piquemal |
| author_sort | Diata Traore |
| collection | DOAJ |
| description | Abstract Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations using hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while minimizing quantum resources is an essential challenge given the limited qubit capabilities of current quantum processors. We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the density-based basis-set corrections approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget. The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties (e.g. dipole moments), but can also serve as a classical, a posteriori, energy correction to quantum hardware calculations with expected applications in drug design and materials science. |
| format | Article |
| id | doaj-art-0cb038a9744e4c9f95d65fee665765ca |
| institution | Kabale University |
| issn | 2399-3669 |
| language | English |
| publishDate | 2024-11-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Communications Chemistry |
| spelling | doaj-art-0cb038a9744e4c9f95d65fee665765ca2024-11-24T12:14:23ZengNature PortfolioCommunications Chemistry2399-36692024-11-017111310.1038/s42004-024-01348-3Shortcut to chemically accurate quantum computing via density-based basis-set correctionDiata Traore0Olivier Adjoua1César Feniou2Ioanna-Maria Lygatsika3Yvon Maday4Evgeny Posenitskiy5Kerstin Hammernik6Alberto Peruzzo7Julien Toulouse8Emmanuel Giner9Jean-Philip Piquemal10Sorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LJLL, UMR 7598 CNRSQubit Pharmaceuticals, Advanced Research DepartmentNVIDIA CorporationQubit Pharmaceuticals, Advanced Research DepartmentSorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LCT, UMR 7616 CNRSAbstract Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations using hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while minimizing quantum resources is an essential challenge given the limited qubit capabilities of current quantum processors. We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the density-based basis-set corrections approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget. The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties (e.g. dipole moments), but can also serve as a classical, a posteriori, energy correction to quantum hardware calculations with expected applications in drug design and materials science.https://doi.org/10.1038/s42004-024-01348-3 |
| spellingShingle | Diata Traore Olivier Adjoua César Feniou Ioanna-Maria Lygatsika Yvon Maday Evgeny Posenitskiy Kerstin Hammernik Alberto Peruzzo Julien Toulouse Emmanuel Giner Jean-Philip Piquemal Shortcut to chemically accurate quantum computing via density-based basis-set correction Communications Chemistry |
| title | Shortcut to chemically accurate quantum computing via density-based basis-set correction |
| title_full | Shortcut to chemically accurate quantum computing via density-based basis-set correction |
| title_fullStr | Shortcut to chemically accurate quantum computing via density-based basis-set correction |
| title_full_unstemmed | Shortcut to chemically accurate quantum computing via density-based basis-set correction |
| title_short | Shortcut to chemically accurate quantum computing via density-based basis-set correction |
| title_sort | shortcut to chemically accurate quantum computing via density based basis set correction |
| url | https://doi.org/10.1038/s42004-024-01348-3 |
| work_keys_str_mv | AT diatatraore shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection AT olivieradjoua shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection AT cesarfeniou shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection AT ioannamarialygatsika shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection AT yvonmaday shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection AT evgenyposenitskiy shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection AT kerstinhammernik shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection AT albertoperuzzo shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection AT julientoulouse shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection AT emmanuelginer shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection AT jeanphilippiquemal shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection |