Shortcut to chemically accurate quantum computing via density-based basis-set correction

Abstract Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations usi...

Full description

Saved in:
Bibliographic Details
Main Authors: Diata Traore, Olivier Adjoua, César Feniou, Ioanna-Maria Lygatsika, Yvon Maday, Evgeny Posenitskiy, Kerstin Hammernik, Alberto Peruzzo, Julien Toulouse, Emmanuel Giner, Jean-Philip Piquemal
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:Communications Chemistry
Online Access:https://doi.org/10.1038/s42004-024-01348-3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846158716664020992
author Diata Traore
Olivier Adjoua
César Feniou
Ioanna-Maria Lygatsika
Yvon Maday
Evgeny Posenitskiy
Kerstin Hammernik
Alberto Peruzzo
Julien Toulouse
Emmanuel Giner
Jean-Philip Piquemal
author_facet Diata Traore
Olivier Adjoua
César Feniou
Ioanna-Maria Lygatsika
Yvon Maday
Evgeny Posenitskiy
Kerstin Hammernik
Alberto Peruzzo
Julien Toulouse
Emmanuel Giner
Jean-Philip Piquemal
author_sort Diata Traore
collection DOAJ
description Abstract Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations using hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while minimizing quantum resources is an essential challenge given the limited qubit capabilities of current quantum processors. We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the density-based basis-set corrections approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget. The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties (e.g. dipole moments), but can also serve as a classical, a posteriori, energy correction to quantum hardware calculations with expected applications in drug design and materials science.
format Article
id doaj-art-0cb038a9744e4c9f95d65fee665765ca
institution Kabale University
issn 2399-3669
language English
publishDate 2024-11-01
publisher Nature Portfolio
record_format Article
series Communications Chemistry
spelling doaj-art-0cb038a9744e4c9f95d65fee665765ca2024-11-24T12:14:23ZengNature PortfolioCommunications Chemistry2399-36692024-11-017111310.1038/s42004-024-01348-3Shortcut to chemically accurate quantum computing via density-based basis-set correctionDiata Traore0Olivier Adjoua1César Feniou2Ioanna-Maria Lygatsika3Yvon Maday4Evgeny Posenitskiy5Kerstin Hammernik6Alberto Peruzzo7Julien Toulouse8Emmanuel Giner9Jean-Philip Piquemal10Sorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LJLL, UMR 7598 CNRSQubit Pharmaceuticals, Advanced Research DepartmentNVIDIA CorporationQubit Pharmaceuticals, Advanced Research DepartmentSorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LCT, UMR 7616 CNRSSorbonne Université, LCT, UMR 7616 CNRSAbstract Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations using hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while minimizing quantum resources is an essential challenge given the limited qubit capabilities of current quantum processors. We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the density-based basis-set corrections approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget. The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties (e.g. dipole moments), but can also serve as a classical, a posteriori, energy correction to quantum hardware calculations with expected applications in drug design and materials science.https://doi.org/10.1038/s42004-024-01348-3
spellingShingle Diata Traore
Olivier Adjoua
César Feniou
Ioanna-Maria Lygatsika
Yvon Maday
Evgeny Posenitskiy
Kerstin Hammernik
Alberto Peruzzo
Julien Toulouse
Emmanuel Giner
Jean-Philip Piquemal
Shortcut to chemically accurate quantum computing via density-based basis-set correction
Communications Chemistry
title Shortcut to chemically accurate quantum computing via density-based basis-set correction
title_full Shortcut to chemically accurate quantum computing via density-based basis-set correction
title_fullStr Shortcut to chemically accurate quantum computing via density-based basis-set correction
title_full_unstemmed Shortcut to chemically accurate quantum computing via density-based basis-set correction
title_short Shortcut to chemically accurate quantum computing via density-based basis-set correction
title_sort shortcut to chemically accurate quantum computing via density based basis set correction
url https://doi.org/10.1038/s42004-024-01348-3
work_keys_str_mv AT diatatraore shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection
AT olivieradjoua shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection
AT cesarfeniou shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection
AT ioannamarialygatsika shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection
AT yvonmaday shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection
AT evgenyposenitskiy shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection
AT kerstinhammernik shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection
AT albertoperuzzo shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection
AT julientoulouse shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection
AT emmanuelginer shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection
AT jeanphilippiquemal shortcuttochemicallyaccuratequantumcomputingviadensitybasedbasissetcorrection