Dynamical Analysis of a Delayed Reaction-Diffusion Predator-Prey System
This work deals with the analysis of a delayed diffusive predator-prey system under Neumann boundary conditions. The dynamics are investigated in terms of the stability of the nonnegative equilibria and the existence of Hopf bifurcation by analyzing the characteristic equations. The direction of Hop...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2012-01-01
|
| Series: | Abstract and Applied Analysis |
| Online Access: | http://dx.doi.org/10.1155/2012/323186 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This work deals with the analysis of a delayed diffusive predator-prey system under Neumann boundary conditions. The dynamics are investigated in terms of the stability of the nonnegative equilibria and the existence of Hopf bifurcation by analyzing the characteristic equations. The direction of Hopf bifurcation and the stability of bifurcating periodic solution are also discussed by employing the normal form theory and the center manifold reduction. Furthermore, we prove that the positive equilibrium is asymptotically stable when the delay is less than a certain critical value and unstable when the delay is greater than the critical value. |
|---|---|
| ISSN: | 1085-3375 1687-0409 |