QRNet: A Quaternion-Based Retinex Framework for Enhanced Wireless Capsule Endoscopy Image Quality
Wireless capsule endoscopy (WCE) offers a non-invasive diagnostic alternative for the gastrointestinal tract using a battery-powered capsule. Despite advantages, WCE encounters issues with video quality and diagnostic accuracy, often resulting in missing rates of 1–20%. These challenges stem from we...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Bioengineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2306-5354/12/3/239 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Wireless capsule endoscopy (WCE) offers a non-invasive diagnostic alternative for the gastrointestinal tract using a battery-powered capsule. Despite advantages, WCE encounters issues with video quality and diagnostic accuracy, often resulting in missing rates of 1–20%. These challenges stem from weak texture characteristics due to non-Lambertian tissue reflections, uneven illumination, and the necessity of color fidelity. Traditional Retinex-based methods used for image enhancement are suboptimal for endoscopy, as they frequently compromise anatomical detail while distorting color. To address these limitations, we introduce QRNet, a novel quaternion-based Retinex framework. QRNet performs image decomposition into reflectance and illumination components within hypercomplex space, maintaining inter-channel relationships that preserve color fidelity. A quaternion wavelet attention mechanism refines essential features while suppressing noise, balancing enhancement and fidelity through an innovative loss function. Experiments on Kvasir-Capsule and Red Lesion Endoscopy datasets demonstrate notable improvements in metrics such as PSNR (+2.3 dB), SSIM (+0.089), and LPIPS (−0.126). Moreover, lesion segmentation accuracy increases by up to 5%, indicating the framework’s potential for improving early-stage lesion detection. Ablation studies highlight the quaternion representation’s pivotal role in maintaining color consistency, confirming the promise of this advanced approach for clinical settings. |
|---|---|
| ISSN: | 2306-5354 |