Assessing the Impact of Psyllid Pesticide Resistance on the Spread of Citrus Huanglongbing and Its Ecological Paradox
Excessive use of pesticides can lead to pesticide resistance in citrus psyllids, and studies have shown that this resistance is related to population genetics. This article proposes a dynamic model of Huanglongbing (HLB) that integrates the population genetics of the citrus psyllid vector and consid...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Computation |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-3197/12/12/242 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Excessive use of pesticides can lead to pesticide resistance in citrus psyllids, and studies have shown that this resistance is related to population genetics. This article proposes a dynamic model of Huanglongbing (HLB) that integrates the population genetics of the citrus psyllid vector and considers the fitness cost associated with pesticide resistance to study how pesticide use affects the development of pesticide resistance at the population level. The basic reproduction number is introduced as a metric to assess whether HLB can be effectively controlled. Additionally, this article explores the impact of different parameters on the spread of HLB. Numerical simulations illustrate that the basic reproduction number decreases as the fitness cost of resistance increases, while an increase in the resistance index leads to an increase in the basic reproduction number. However, when the fitness cost is sufficiently high, a larger resistance index may result in a basic reproduction number less than 1, leading to the extinction of Asian citrus psyllid (ACP), thus causing a paradox effect. |
|---|---|
| ISSN: | 2079-3197 |