Controlled Formation of Silicon-Vacancy Centers in High-Pressure Nanodiamonds Produced from an “Adamantane + Detonation Nanodiamond” Mixture
Despite progress in the high-pressure synthesis of nanodiamonds from hydrocarbons, the problem of controlled formation of fluorescent impurity centers in them still remains unresolved. In our work, we explore the potential of a new precursor composition, a mixture of adamantane with detonation nanod...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-11-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/14/22/1843 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Despite progress in the high-pressure synthesis of nanodiamonds from hydrocarbons, the problem of controlled formation of fluorescent impurity centers in them still remains unresolved. In our work, we explore the potential of a new precursor composition, a mixture of adamantane with detonation nanodiamond, both in the synthesis of nanodiamonds and in the controlled formation of negatively charged silicon-vacancy centers in such nanodiamonds. Using different adamantane/detonation nanodiamond weight ratios, a series of samples was synthesized at a pressure of 7.5 GPa in the temperature range of 1200–1500 °C. It was found that temperature around 1350 °C, is optimal for the high-yield synthesis of nanodiamonds <50 nm in size. For the first time, controlled formation of negatively charged silicon-vacancy centers in such small nanodiamonds was demonstrated by varying the atomic ratios of silicon/carbon in the precursor in the range of 0.01–1%. |
|---|---|
| ISSN: | 2079-4991 |