Landslide Susceptibility Assessment in Ya’an Based on Coupling of GWR and TabNet

Landslides are destructive geological hazards, making accurate landslide susceptibility assessment essential for disaster prevention and mitigation. However, existing studies often lack scientific rigor in negative sample construction and have unclear model applicability. This study focuses on Ya’an...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiatian Li, Ruirui Wang, Wei Shi, Le Yang, Jiahao Wei, Fei Liu, Kaiwei Xiong
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/15/2678
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Landslides are destructive geological hazards, making accurate landslide susceptibility assessment essential for disaster prevention and mitigation. However, existing studies often lack scientific rigor in negative sample construction and have unclear model applicability. This study focuses on Ya’an City, Sichuan Province, China, and proposes an innovative approach to negative sample construction using Geographically Weighted Regression (GWR), which is then integrated with Tabular Network (TabNet), a deep learning architecture tailored to structured tabular data, to assess landslide susceptibility. The performance of TabNet is compared against Random Forest, Light Gradient Boosting Machine, deep neural networks, and Residual Networks. The experimental results indicate that (1) the GWR-based sampling strategy substantially improves model performance across all tested models; (2) TabNet trained using the GWR-based negative samples achieves superior performance over all other evaluated models, with an average AUC of 0.9828, exhibiting both high accuracy and interpretability; and (3) elevation, land cover, and annual Normalized Difference Vegetation Index are identified as dominant predictors through TabNet’s feature importance analysis. The results demonstrate that combining GWR and TabNet substantially enhances landslide susceptibility modeling by improving both accuracy and interpretability, establishing a more scientifically grounded approach to negative sample construction, and providing an interpretable, high-performing modeling framework for geological hazard risk assessment.
ISSN:2072-4292