AFQSeg: An Adaptive Feature Quantization Network for Instance-Level Surface Crack Segmentation
Concrete surface crack detection plays a crucial role in infrastructure maintenance and safety. Deep learning-based methods have shown great potential in this task. However, under real-world conditions such as poor image quality, environmental interference, and complex crack patterns, existing model...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Computers |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-431X/14/5/182 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Concrete surface crack detection plays a crucial role in infrastructure maintenance and safety. Deep learning-based methods have shown great potential in this task. However, under real-world conditions such as poor image quality, environmental interference, and complex crack patterns, existing models still face challenges in detecting fine cracks and often rely on large training parameters, limiting their practicality in complex environments. To address these issues, this paper proposes a crack detection model based on adaptive feature quantization, which primarily consists of a maximum soft pooling module, an adaptive crack feature quantization module, and a trainable crack post-processing module. Specifically, the maximum soft pooling module improves the continuity and integrity of detected cracks. The adaptive crack feature quantization module enhances the contrast between cracks and background features and strengthens the model’s focus on critical regions through spatial feature fusion. The trainable crack post-processing module incorporates edge-guided post-processing algorithms to correct false predictions and refine segmentation results. Experiments conducted on the Crack500 Road Crack Dataset show that, the proposed model achieves notable improvements in detection accuracy and efficiency, with an average F1-score improvement of 2.81% and a precision gain of 2.20% over the baseline methods. In addition, the model significantly reduces computational cost, achieving a 78.5–88.7% reduction in parameter size and up to 96.8% improvement in inference speed, making it more efficient and deployable for real-world crack detection applications. |
|---|---|
| ISSN: | 2073-431X |