Observation of multiple steady states with engineered dissipation

Abstract Simulating the dynamics of open quantum systems is essential in achieving practical quantum computation and understanding novel nonequilibrium behaviors. However, quantum simulation of a many-body system coupled to an engineered reservoir has yet to be fully explored in present-day experime...

Full description

Saved in:
Bibliographic Details
Main Authors: Li Li, Tong Liu, Xue-Yi Guo, He Zhang, Silu Zhao, Zheng-An Wang, Zhongcheng Xiang, Xiaohui Song, Yu-Xiang Zhang, Kai Xu, Heng Fan, Dongning Zheng
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj Quantum Information
Online Access:https://doi.org/10.1038/s41534-025-00958-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Simulating the dynamics of open quantum systems is essential in achieving practical quantum computation and understanding novel nonequilibrium behaviors. However, quantum simulation of a many-body system coupled to an engineered reservoir has yet to be fully explored in present-day experiment platforms. In this work, we introduce engineered noise into a one-dimensional ten-qubit superconducting quantum processor to emulate a generic many-body open quantum system. Our approach originates from the stochastic unravellings of the master equation. By measuring the end-to-end correlation, we identify multiple steady states stemmed from a strong symmetry, which is established on the modified Hamiltonian via Floquet engineering. Furthermore, we investigate the structure of the steady-state manifold by preparing initial states as a superposition of states within different sectors on a five-qubit chain. Our work provides a manageable and hardware-efficient strategy for the open-system quantum simulation.
ISSN:2056-6387