Effective Feature Selection on Transfer Deep Learning Algorithm for Thyroid Nodules Ultrasound Detection
Thyroid nodules (TNs) are discrete abnormalities located within the thyroid gland that are radiologically different from the surrounding thyroid tissue. Ultrasound is an accurate and efficient way to diagnose thyroid nodules. Recently, several methods of AI were proposed to improve the detection of...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Al-Nahrain Journal for Engineering Sciences
2024-12-01
|
Series: | مجلة النهرين للعلوم الهندسية |
Subjects: | |
Online Access: | https://nahje.com/index.php/main/article/view/1217 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thyroid nodules (TNs) are discrete abnormalities located within the thyroid gland that are radiologically different from the surrounding thyroid tissue. Ultrasound is an accurate and efficient way to diagnose thyroid nodules. Recently, several methods of AI were proposed to improve the detection of thyroid nodules ultrasound images with good performances. However, in some cases related to the type or size of the dataset using machine or transfer deep learning methods alone is unable to achieve high accuracy and high specificity. Consequently, the addition of feature selection)FS) to the deep learning method enhances the results by reducing the high features and the time needed for training the dataset. This study proposes two deep-learning models for classifying thyroid nodule US images into two categories: benign and malignant. ResNet50 was the first model used to extract deep features from US images. The second model integrates ResNet50 and principal component analysis (PCA) for feature selection, intending to reduce dataset dimensionality while maintaining the greatest data variance possible before classification. The proposed model was created using a freely available dataset. The dataset consists of 800 images, 400 benign and 400 malignant. The suggested system was accessed based on accuracy, precision, recall, and F1 score. The classification accuracy for ResNet50 was 85%, while ReNet50-PCA was 89.16%. The combination of deep learning and FS techniques in this research produces an interesting diagnostic framework that can potentially increase efficiency and accuracy in thyroid cancer detection, especially in local healthcare centers.
|
---|---|
ISSN: | 2521-9154 2521-9162 |