Nuclear Structure Study Using Relativistic Mean Field (RMF) Method
The current study uses the relativistic mean field approach to investigate the nuclear structure of selected even-even neutron-rich nuclei spanning from the stability line to the neutron drip line. Specifically, the nuclei studied include 16–28O, 30–42Si, 48–60Ca, 56–68Ni, 88–100Kr, 96–122Ru, 140–1...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
University of Baghdad
2024-12-01
|
| Series: | Iraqi Journal of Physics |
| Subjects: | |
| Online Access: | https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1318 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1846111232355991552 |
|---|---|
| author | Sahar M. Aldulaimi Ali A. Alzubadi |
| author_facet | Sahar M. Aldulaimi Ali A. Alzubadi |
| author_sort | Sahar M. Aldulaimi |
| collection | DOAJ |
| description |
The current study uses the relativistic mean field approach to investigate the nuclear structure of selected even-even neutron-rich nuclei spanning from the stability line to the neutron drip line. Specifically, the nuclei studied include 16–28O, 30–42Si, 48–60Ca, 56–68Ni, 88–100Kr, 96–122Ru, 140–152Ba, 142–154Sm, and 150–162Er. The relativistic Hartree-Bogoliubov (RHB) method was applied, incorporating effective density-dependent point coupling (DD-PC) and density-dependent meson exchange (DD-ME) interactions. The impact of these interactions was demonstrated through the calculation of various nuclear structure properties, including binding energy (BE), kinetic energy (KE), pairing energy (PE), root mean square (rms) charge radius, two-neutron separation energy (S2n), mass densities (ρm), and triaxial deformation. The calculated results were compared with the available experimental data. It is clear that the RMF approach, particularly with the DD-ME2 and DD-PC1 effective interactions, proved to be a valuable tool for studying nuclear properties near the drip lines and away from stability, providing insights into the behavior of exotic or halo nuclei.
|
| format | Article |
| id | doaj-art-095c99603c86491db104f58a01e21d00 |
| institution | Kabale University |
| issn | 2070-4003 2664-5548 |
| language | English |
| publishDate | 2024-12-01 |
| publisher | University of Baghdad |
| record_format | Article |
| series | Iraqi Journal of Physics |
| spelling | doaj-art-095c99603c86491db104f58a01e21d002024-12-23T08:27:15ZengUniversity of BaghdadIraqi Journal of Physics2070-40032664-55482024-12-0122410.30723/ijp.v22i4.1318Nuclear Structure Study Using Relativistic Mean Field (RMF) MethodSahar M. Aldulaimi0Ali A. Alzubadi1Department of Physics, College of Science, University of Baghdad, Baghdad, IraqDepartment of Physics, College of Science, University of Baghdad, Baghdad, Iraq The current study uses the relativistic mean field approach to investigate the nuclear structure of selected even-even neutron-rich nuclei spanning from the stability line to the neutron drip line. Specifically, the nuclei studied include 16–28O, 30–42Si, 48–60Ca, 56–68Ni, 88–100Kr, 96–122Ru, 140–152Ba, 142–154Sm, and 150–162Er. The relativistic Hartree-Bogoliubov (RHB) method was applied, incorporating effective density-dependent point coupling (DD-PC) and density-dependent meson exchange (DD-ME) interactions. The impact of these interactions was demonstrated through the calculation of various nuclear structure properties, including binding energy (BE), kinetic energy (KE), pairing energy (PE), root mean square (rms) charge radius, two-neutron separation energy (S2n), mass densities (ρm), and triaxial deformation. The calculated results were compared with the available experimental data. It is clear that the RMF approach, particularly with the DD-ME2 and DD-PC1 effective interactions, proved to be a valuable tool for studying nuclear properties near the drip lines and away from stability, providing insights into the behavior of exotic or halo nuclei. https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1318Relativistic Mean FieldNeutron RichMeson ExchangePoint CouplingEven-Even nuclei |
| spellingShingle | Sahar M. Aldulaimi Ali A. Alzubadi Nuclear Structure Study Using Relativistic Mean Field (RMF) Method Iraqi Journal of Physics Relativistic Mean Field Neutron Rich Meson Exchange Point Coupling Even-Even nuclei |
| title | Nuclear Structure Study Using Relativistic Mean Field (RMF) Method |
| title_full | Nuclear Structure Study Using Relativistic Mean Field (RMF) Method |
| title_fullStr | Nuclear Structure Study Using Relativistic Mean Field (RMF) Method |
| title_full_unstemmed | Nuclear Structure Study Using Relativistic Mean Field (RMF) Method |
| title_short | Nuclear Structure Study Using Relativistic Mean Field (RMF) Method |
| title_sort | nuclear structure study using relativistic mean field rmf method |
| topic | Relativistic Mean Field Neutron Rich Meson Exchange Point Coupling Even-Even nuclei |
| url | https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1318 |
| work_keys_str_mv | AT saharmaldulaimi nuclearstructurestudyusingrelativisticmeanfieldrmfmethod AT aliaalzubadi nuclearstructurestudyusingrelativisticmeanfieldrmfmethod |