Huntingtin phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice

Abstract Mutations in the X‐linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder for which there is no treatment. Several studies have linked the loss of MeCP2 function to alterations of brain‐derived neurotrophic factor (BDNF) levels, but non‐specific overexpres...

Full description

Saved in:
Bibliographic Details
Main Authors: Yann Ehinger, Julie Bruyère, Nicolas Panayotis, Yah‐Se Abada, Emilie Borloz, Valérie Matagne, Chiara Scaramuzzino, Hélène Vitet, Benoit Delatour, Lydia Saidi, Laurent Villard, Frédéric Saudou, Jean‐Christophe Roux
Format: Article
Language:English
Published: Springer Nature 2020-01-01
Series:EMBO Molecular Medicine
Subjects:
Online Access:https://doi.org/10.15252/emmm.201910889
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Mutations in the X‐linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder for which there is no treatment. Several studies have linked the loss of MeCP2 function to alterations of brain‐derived neurotrophic factor (BDNF) levels, but non‐specific overexpression of BDNF only partially improves the phenotype of Mecp2‐deficient mice. We and others have previously shown that huntingtin (HTT) scaffolds molecular motor complexes, transports BDNF‐containing vesicles, and is under‐expressed in Mecp2 knockout brains. Here, we demonstrate that promoting HTT phosphorylation at Ser421, either by a phospho‐mimetic mutation or inhibition of the phosphatase calcineurin, restores endogenous BDNF axonal transport in vitro in the corticostriatal pathway, increases striatal BDNF availability and synaptic connectivity in vivo, and improves the phenotype and the survival of Mecp2 knockout mice—even though treatments were initiated only after the mice had already developed symptoms. Stimulation of endogenous cellular pathways may thus be a promising approach for the treatment of RTT patients.
ISSN:1757-4676
1757-4684