YOLO-SEA: An Enhanced Detection Framework for Multi-Scale Maritime Targets in Complex Sea States and Adverse Weather
Maritime object detection is essential for resource monitoring, maritime defense, and public safety, yet detecting diverse targets beyond ships remains challenging. This paper presents YOLO-SEA, an efficient detection framework based on the enhanced YOLOv8 architecture. The model incorporates the SE...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Entropy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1099-4300/27/7/667 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Maritime object detection is essential for resource monitoring, maritime defense, and public safety, yet detecting diverse targets beyond ships remains challenging. This paper presents YOLO-SEA, an efficient detection framework based on the enhanced YOLOv8 architecture. The model incorporates the SESA (SimAM-Enhanced SENetV2 Attention) module, which integrates the channel-adaptive weight adjustment of SENetV2 with the parameter-free spatial-channel modeling of SimAM to enhance feature representation. An improved BiFPN (Bidirectional Feature Pyramid Network) structure enhances multi-scale fusion, particularly for small object detection. In the post-processing stage, Soft-NMS (Soft Non-Maximum Suppression) replaces traditional NMS to reduce false suppression in dense scenes. YOLO-SEA detects eight maritime object types. Experiments show it achieves a 5.8% improvement in mAP@0.5 and 7.2% improvement in mAP@0.5:0.95 over the baseline, demonstrating enhanced accuracy and robustness in complex marine environments. |
|---|---|
| ISSN: | 1099-4300 |