Pre-Compactness of Sets and Compactness of Commutators for Riesz Potential in Global Morrey-Type Spaces

In this paper, we establish sufficient conditions for the pre-compactness of sets in the global Morrey-type spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><m...

Full description

Saved in:
Bibliographic Details
Main Authors: Nurzhan Bokayev, Victor Burenkov, Dauren Matin, Aidos Adilkhanov
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/22/3533
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846153046926557184
author Nurzhan Bokayev
Victor Burenkov
Dauren Matin
Aidos Adilkhanov
author_facet Nurzhan Bokayev
Victor Burenkov
Dauren Matin
Aidos Adilkhanov
author_sort Nurzhan Bokayev
collection DOAJ
description In this paper, we establish sufficient conditions for the pre-compactness of sets in the global Morrey-type spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><mi>p</mi><mi>θ</mi></mrow><mrow><mi>w</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msubsup></mrow></semantics></math></inline-formula>. Our main result is the compactness of the commutators of the Riesz potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="[" close="]"><mi>b</mi><mo>,</mo><msub><mi>I</mi><mi>α</mi></msub></mfenced></semantics></math></inline-formula> in global Morrey-type spaces from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><msub><mi>p</mi><mn>1</mn></msub><msub><mi>θ</mi><mn>1</mn></msub></mrow><mrow><msub><mi>w</mi><mn>1</mn></msub><mrow><mo>(</mo><mo>·</mo><mo>)</mo></mrow></mrow></msubsup></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><msub><mi>p</mi><mn>2</mn></msub><msub><mi>θ</mi><mn>2</mn></msub></mrow><mrow><msub><mi>w</mi><mn>2</mn></msub><mrow><mo>(</mo><mo>·</mo><mo>)</mo></mrow></mrow></msubsup></mrow></semantics></math></inline-formula>. We also present new sufficient conditions for the commutator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="[" close="]"><mi>b</mi><mo>,</mo><msub><mi>I</mi><mi>α</mi></msub></mfenced></semantics></math></inline-formula> to be bounded from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><msub><mi>p</mi><mn>1</mn></msub><msub><mi>θ</mi><mn>1</mn></msub></mrow><mrow><msub><mi>w</mi><mn>1</mn></msub><mrow><mo>(</mo><mo>·</mo><mo>)</mo></mrow></mrow></msubsup></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><msub><mi>p</mi><mn>2</mn></msub><msub><mi>θ</mi><mn>2</mn></msub></mrow><mrow><msub><mi>w</mi><mn>2</mn></msub><mrow><mo>(</mo><mo>·</mo><mo>)</mo></mrow></mrow></msubsup></mrow></semantics></math></inline-formula>. In the proof of the theorem regarding the compactness of the commutator for the Riesz potential, we primarily utilize the boundedness condition for the commutator for the Riesz potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="[" close="]"><mi>b</mi><mo>,</mo><msub><mi>I</mi><mi>α</mi></msub></mfenced></semantics></math></inline-formula> in global Morrey-type spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><mi>p</mi><mi>θ</mi></mrow><mrow><mi>w</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msubsup></mrow></semantics></math></inline-formula>, and the sufficient conditions derived from the theorem on pre-compactness of sets in global Morrey-type spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><mi>p</mi><mi>θ</mi></mrow><mrow><mi>w</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msubsup></mrow></semantics></math></inline-formula>.
format Article
id doaj-art-068c02693b4749518cec1d61b8fea79b
institution Kabale University
issn 2227-7390
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-068c02693b4749518cec1d61b8fea79b2024-11-26T18:11:44ZengMDPI AGMathematics2227-73902024-11-011222353310.3390/math12223533Pre-Compactness of Sets and Compactness of Commutators for Riesz Potential in Global Morrey-Type SpacesNurzhan Bokayev0Victor Burenkov1Dauren Matin2Aidos Adilkhanov3Faculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, Astana 010000, KazakhstanV.A. Steklov Mathematical Institute, Russian Academy of Sciences, 42 Gubkin St, 117966 Moscow, RussiaFaculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, Astana 010000, KazakhstanFaculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, Astana 010000, KazakhstanIn this paper, we establish sufficient conditions for the pre-compactness of sets in the global Morrey-type spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><mi>p</mi><mi>θ</mi></mrow><mrow><mi>w</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msubsup></mrow></semantics></math></inline-formula>. Our main result is the compactness of the commutators of the Riesz potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="[" close="]"><mi>b</mi><mo>,</mo><msub><mi>I</mi><mi>α</mi></msub></mfenced></semantics></math></inline-formula> in global Morrey-type spaces from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><msub><mi>p</mi><mn>1</mn></msub><msub><mi>θ</mi><mn>1</mn></msub></mrow><mrow><msub><mi>w</mi><mn>1</mn></msub><mrow><mo>(</mo><mo>·</mo><mo>)</mo></mrow></mrow></msubsup></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><msub><mi>p</mi><mn>2</mn></msub><msub><mi>θ</mi><mn>2</mn></msub></mrow><mrow><msub><mi>w</mi><mn>2</mn></msub><mrow><mo>(</mo><mo>·</mo><mo>)</mo></mrow></mrow></msubsup></mrow></semantics></math></inline-formula>. We also present new sufficient conditions for the commutator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="[" close="]"><mi>b</mi><mo>,</mo><msub><mi>I</mi><mi>α</mi></msub></mfenced></semantics></math></inline-formula> to be bounded from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><msub><mi>p</mi><mn>1</mn></msub><msub><mi>θ</mi><mn>1</mn></msub></mrow><mrow><msub><mi>w</mi><mn>1</mn></msub><mrow><mo>(</mo><mo>·</mo><mo>)</mo></mrow></mrow></msubsup></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><msub><mi>p</mi><mn>2</mn></msub><msub><mi>θ</mi><mn>2</mn></msub></mrow><mrow><msub><mi>w</mi><mn>2</mn></msub><mrow><mo>(</mo><mo>·</mo><mo>)</mo></mrow></mrow></msubsup></mrow></semantics></math></inline-formula>. In the proof of the theorem regarding the compactness of the commutator for the Riesz potential, we primarily utilize the boundedness condition for the commutator for the Riesz potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="[" close="]"><mi>b</mi><mo>,</mo><msub><mi>I</mi><mi>α</mi></msub></mfenced></semantics></math></inline-formula> in global Morrey-type spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><mi>p</mi><mi>θ</mi></mrow><mrow><mi>w</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msubsup></mrow></semantics></math></inline-formula>, and the sufficient conditions derived from the theorem on pre-compactness of sets in global Morrey-type spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><msubsup><mi>M</mi><mrow><mi>p</mi><mi>θ</mi></mrow><mrow><mi>w</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msubsup></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/12/22/3533commutatorRiesz potentialcompactnessglobal Morrey space<i>VMO</i>
spellingShingle Nurzhan Bokayev
Victor Burenkov
Dauren Matin
Aidos Adilkhanov
Pre-Compactness of Sets and Compactness of Commutators for Riesz Potential in Global Morrey-Type Spaces
Mathematics
commutator
Riesz potential
compactness
global Morrey space
<i>VMO</i>
title Pre-Compactness of Sets and Compactness of Commutators for Riesz Potential in Global Morrey-Type Spaces
title_full Pre-Compactness of Sets and Compactness of Commutators for Riesz Potential in Global Morrey-Type Spaces
title_fullStr Pre-Compactness of Sets and Compactness of Commutators for Riesz Potential in Global Morrey-Type Spaces
title_full_unstemmed Pre-Compactness of Sets and Compactness of Commutators for Riesz Potential in Global Morrey-Type Spaces
title_short Pre-Compactness of Sets and Compactness of Commutators for Riesz Potential in Global Morrey-Type Spaces
title_sort pre compactness of sets and compactness of commutators for riesz potential in global morrey type spaces
topic commutator
Riesz potential
compactness
global Morrey space
<i>VMO</i>
url https://www.mdpi.com/2227-7390/12/22/3533
work_keys_str_mv AT nurzhanbokayev precompactnessofsetsandcompactnessofcommutatorsforrieszpotentialinglobalmorreytypespaces
AT victorburenkov precompactnessofsetsandcompactnessofcommutatorsforrieszpotentialinglobalmorreytypespaces
AT daurenmatin precompactnessofsetsandcompactnessofcommutatorsforrieszpotentialinglobalmorreytypespaces
AT aidosadilkhanov precompactnessofsetsandcompactnessofcommutatorsforrieszpotentialinglobalmorreytypespaces