Rapid bacterial identification through volatile organic compound analysis and deep learning

Abstract Background The increasing antimicrobial resistance caused by the improper use of antibiotics poses a significant challenge to humanity. Rapid and accurate identification of microbial species in clinical settings is crucial for precise medication and reducing the development of antimicrobial...

Full description

Saved in:
Bibliographic Details
Main Authors: Bowen Yan, Lin Zeng, Yanyi Lu, Min Li, Weiping Lu, Bangfu Zhou, Qinghua He
Format: Article
Language:English
Published: BMC 2024-11-01
Series:BMC Bioinformatics
Subjects:
Online Access:https://doi.org/10.1186/s12859-024-05967-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background The increasing antimicrobial resistance caused by the improper use of antibiotics poses a significant challenge to humanity. Rapid and accurate identification of microbial species in clinical settings is crucial for precise medication and reducing the development of antimicrobial resistance. This study aimed to explore a method for automatic identification of bacteria using Volatile Organic Compounds (VOCs) analysis and deep learning algorithms. Results AlexNet, where augmentation is applied, produces the best results. The average accuracy rate for single bacterial culture classification reached 99.24% using cross-validation, and the accuracy rates for identifying the three bacteria in randomly mixed cultures were SA:98.6%, EC:98.58% and PA:98.99%, respectively. Conclusion This work provides a new approach to quickly identify bacterial microorganisms. Using this method can automatically identify bacteria in GC-IMS detection results, helping clinical doctors quickly detect bacterial species, accurately prescribe medication, thereby controlling epidemics, and minimizing the negative impact of bacterial resistance on society.
ISSN:1471-2105