Computational measures of irregularity molecular descriptors of octahedral and icosahedral networks

Irregularity measures tend to describe the complexity of networks. Chemical graph theory is a branch of mathematical chemistry that has a significant impact on the development of the chemical sciences. The study of irregularity indices has recently become one of the most active research areas in che...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiujun Zhang, Hafiz Mutee ur Rehman, M. Mobeen Munir
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-01-01
Series:Frontiers in Chemistry
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fchem.2024.1485184/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841525824737509376
author Xiujun Zhang
Hafiz Mutee ur Rehman
M. Mobeen Munir
author_facet Xiujun Zhang
Hafiz Mutee ur Rehman
M. Mobeen Munir
author_sort Xiujun Zhang
collection DOAJ
description Irregularity measures tend to describe the complexity of networks. Chemical graph theory is a branch of mathematical chemistry that has a significant impact on the development of the chemical sciences. The study of irregularity indices has recently become one of the most active research areas in chemical graph theory. Irregularity indices help us to examine many chemical and biological properties of chemical structures under study. In this article, we study the irregularity indices of the octahedral and icosahedral networks. These networks are used in crystallography, where the topology and structural aspects are carrying some important facts to determine the properties of large structures theoretically. Our results play an important role in pharmacy, drug design, and many other applied areas. We also compared our results graphically to conclude the irregularity with a change in the parameter of structures.
format Article
id doaj-art-05b6c836c81b4162a2750e53ad7a9289
institution Kabale University
issn 2296-2646
language English
publishDate 2025-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Chemistry
spelling doaj-art-05b6c836c81b4162a2750e53ad7a92892025-01-17T06:51:07ZengFrontiers Media S.A.Frontiers in Chemistry2296-26462025-01-011210.3389/fchem.2024.14851841485184Computational measures of irregularity molecular descriptors of octahedral and icosahedral networksXiujun Zhang0Hafiz Mutee ur Rehman1M. Mobeen Munir2School of Computer Science, Chengdu University, Chengdu, ChinaDepartment of Mathematics, Division of Science and Technology, University of Education Lahore, Lahore, PakistanDepartment of Mathematics, University of the Punjab, Lahore, PakistanIrregularity measures tend to describe the complexity of networks. Chemical graph theory is a branch of mathematical chemistry that has a significant impact on the development of the chemical sciences. The study of irregularity indices has recently become one of the most active research areas in chemical graph theory. Irregularity indices help us to examine many chemical and biological properties of chemical structures under study. In this article, we study the irregularity indices of the octahedral and icosahedral networks. These networks are used in crystallography, where the topology and structural aspects are carrying some important facts to determine the properties of large structures theoretically. Our results play an important role in pharmacy, drug design, and many other applied areas. We also compared our results graphically to conclude the irregularity with a change in the parameter of structures.https://www.frontiersin.org/articles/10.3389/fchem.2024.1485184/fullirregularity indicesoctahedral networkicosahedral networkcomputational comparisonscomplexity
spellingShingle Xiujun Zhang
Hafiz Mutee ur Rehman
M. Mobeen Munir
Computational measures of irregularity molecular descriptors of octahedral and icosahedral networks
Frontiers in Chemistry
irregularity indices
octahedral network
icosahedral network
computational comparisons
complexity
title Computational measures of irregularity molecular descriptors of octahedral and icosahedral networks
title_full Computational measures of irregularity molecular descriptors of octahedral and icosahedral networks
title_fullStr Computational measures of irregularity molecular descriptors of octahedral and icosahedral networks
title_full_unstemmed Computational measures of irregularity molecular descriptors of octahedral and icosahedral networks
title_short Computational measures of irregularity molecular descriptors of octahedral and icosahedral networks
title_sort computational measures of irregularity molecular descriptors of octahedral and icosahedral networks
topic irregularity indices
octahedral network
icosahedral network
computational comparisons
complexity
url https://www.frontiersin.org/articles/10.3389/fchem.2024.1485184/full
work_keys_str_mv AT xiujunzhang computationalmeasuresofirregularitymoleculardescriptorsofoctahedralandicosahedralnetworks
AT hafizmuteeurrehman computationalmeasuresofirregularitymoleculardescriptorsofoctahedralandicosahedralnetworks
AT mmobeenmunir computationalmeasuresofirregularitymoleculardescriptorsofoctahedralandicosahedralnetworks