The Cross‐Over From Viscous to Inertial Lengthscales in Rapidly‐Rotating Convection
Abstract Convection is the main heat transport mechanism in the Earth's liquid core and is thought to power the dynamo that generates the geomagnetic field. Core convection is strongly constrained by rotation while being turbulent. Given the difficulty in modeling these conditions, some key pro...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2025-04-01
|
| Series: | Geophysical Research Letters |
| Subjects: | |
| Online Access: | https://doi.org/10.1029/2024GL111593 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Convection is the main heat transport mechanism in the Earth's liquid core and is thought to power the dynamo that generates the geomagnetic field. Core convection is strongly constrained by rotation while being turbulent. Given the difficulty in modeling these conditions, some key properties of core convection are still debated, including the dominant energy‐carrying lengthscale. Different regimes of rapidly rotating, unmagnetized, turbulent convection exist depending on the importance of viscous and inertial forces in the dynamics, and hence different theoretical predictions for the dominant flow lengthscale have been proposed. Here we study the transition from viscously dominated to inertia‐dominated regimes using numerical simulations in spherical and planar geometries. We find that the cross‐over occurs when the inertial lengthscale approximately equals the viscous lengthscale. This suggests that core convection in the absence of magnetic fields is dominated by the inertial scale, which is hundred times larger than the viscous scale. |
|---|---|
| ISSN: | 0094-8276 1944-8007 |