Uncovering multiscale structure-property correlations via active learning in scanning tunneling microscopy

Abstract Atomic arrangements and local sub-structures fundamentally influence emergent material functionalities. These structures are conventionally probed using spatially resolved studies and the property correlations are deciphered by a researcher based on sequential explorations, thereby limiting...

Full description

Saved in:
Bibliographic Details
Main Authors: Ganesh Narasimha, Dejia Kong, Paras Regmi, Rongying Jin, Zheng Gai, Rama Vasudevan, Maxim Ziatdinov
Format: Article
Language:English
Published: Nature Portfolio 2025-06-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-025-01642-1
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Atomic arrangements and local sub-structures fundamentally influence emergent material functionalities. These structures are conventionally probed using spatially resolved studies and the property correlations are deciphered by a researcher based on sequential explorations, thereby limiting the efficiency and scope. Here we demonstrate a multi-scale Bayesian deep-learning based framework that automatically correlates material structure with its electronic properties using scanning tunneling microscopy (STM) measurements in real-time. Its predictions are used to autonomously direct exploration toward regions of the sample that optimize a given material property. This method is deployed on a low-temperature ultra-high vacuum STM to understand the structure-property relationship in a europium-based semimetal, EuZn2As2, a promising candidate relevant to magnetism-driven topological phenomena. The framework employs a sparse-sampling approach to efficiently construct the scalar-property space using minimal measurements, about 1–10% of the data required in standard hyperspectral methods. Moreover, we formulate the problem hierarchically across length scales, implementing autonomous workflow to locate mesoscopic and atomic structures that correspond to a target material property. This framework offers the choice to design scalar-property from the spectroscopic data to steer sample exploration. Our findings reveal correlations of the electronic properties unique to surface terminations, local defect density, and point defects.
ISSN:2057-3960