Using AI for Optimizing Packing Design and Reducing Cost in E-Commerce
This research explores how artificial intelligence (AI) can be leveraged to optimize packaging design, reduce operational costs, and enhance sustainability in e-commerce. As packaging waste and shipping inefficiencies grow alongside global online retail demand, traditional methods for determining bo...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | AI |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-2688/6/7/146 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This research explores how artificial intelligence (AI) can be leveraged to optimize packaging design, reduce operational costs, and enhance sustainability in e-commerce. As packaging waste and shipping inefficiencies grow alongside global online retail demand, traditional methods for determining box size, material use, and logistics planning have become economically and environmentally inadequate. Using a three-phase framework, this study integrates data-driven diagnostics, AI modeling, and real-world validation. In the first phase, a systematic analysis of current packaging inefficiencies was conducted through secondary data, benchmarking, and cost modeling. Findings revealed significant waste caused by over-packaging, suboptimal box-sizing, and poor alignment between product characteristics and logistics strategy. In the second phase, a random forest (RF) machine learning model was developed to predict optimal packaging configurations using key product features: weight, volume, and fragility. This model was supported by AI simulation tools that enabled virtual testing of material performance, space efficiency, and damage risk. Results demonstrated measurable improvements in packaging optimization, cost reduction, and emission mitigation. The third phase validated the AI framework using practical case studies—ranging from a college textbook to a fragile kitchen dish set and a high-volume children’s bicycle. The model successfully recommended right-sized packaging for each product, resulting in reduced material usage, improved shipping density, and enhanced protection. Simulated cost-saving scenarios further confirmed that smart packaging and AI-generated configurations can drive efficiency. The research concludes that AI-based packaging systems offer substantial strategic value, including cost savings, environmental benefits, and alignment with regulatory and consumer expectations—providing scalable, data-driven solutions for e-commerce enterprises such as Amazon and others. |
|---|---|
| ISSN: | 2673-2688 |