Autophagic degradation of CDK4 is responsible for G0/G1 cell cycle arrest in NVP-BEZ235-treated neuroblastoma

Background CDK4 is highly expressed and associated with poor prognosis and decreased survival in advanced neuroblastoma (NB). Targeting CDK4 degradation presents a potentially promising therapeutic strategy compared to conventional CDK4 inhibitors. However, the autophagic degradation of the CDK4 pro...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhen Liu, Xiao-Yang Wang, Han-Wei Wang, Shan-Ling Liu, Chao Zhang, Feng Liu, Ying Guo, Feng-Hou Gao
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Cancer Biology & Therapy
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/15384047.2024.2385517
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background CDK4 is highly expressed and associated with poor prognosis and decreased survival in advanced neuroblastoma (NB). Targeting CDK4 degradation presents a potentially promising therapeutic strategy compared to conventional CDK4 inhibitors. However, the autophagic degradation of the CDK4 protein and its anti-proliferation effect in NB cells has not been mentioned.Results We identified autophagy as a new pathway for the degradation of CDK4. Firstly, autophagic degradation of CDK4 is critical for NVP-BEZ235-induced G0/G1 arrest, as demonstrated by the overexpression of CDK4, autophagy inhibition, and blockade of autophagy-related genes. Secondly, we present the first evidence that p62 binds to CDK4 and then enters the autophagy-lysosome to degrade CDK4 in a CTSB-dependent manner in NVP-BEZ235 treated NB cells. Similar results regarding the interaction between p62 and CDK4 were observed in the NVP-BEZ235 treated NB xenograft mouse model.Conclusions Autophagic degradation of CDK4 plays a pivotal role in G0/G1 cell cycle arrest in NB cells treated with NVP-BEZ235.
ISSN:1538-4047
1555-8576