New approach to the fractional derivatives
We introduce a new approach to the fractional derivatives of the analytical functions using the Taylor series of the functions. In order to calculate the fractional derivatives of f, it is not sufficient to know the Taylor expansion of f, but we should also know the constants of all consecutive inte...
Saved in:
| Main Author: | Kostadin Trenčevski |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2003-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Online Access: | http://dx.doi.org/10.1155/S0161171203206050 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Caputo fractional derivative in the solution of Kolmogorov equations: a new numerical approach
by: Mohammad Alshammari, et al.
Published: (2025-07-01) -
The general Caputo–Katugampola fractional derivative and numerical approach for solving the fractional differential equations
by: Lakhlifa Sadek, et al.
Published: (2025-05-01) -
An Efficient New Technique for Solving Nonlinear Problems Involving the Conformable Fractional Derivatives
by: Shams A. Ahmed
Published: (2024-01-01) -
Solving intuitionistic fuzzy fractional differential equations with $\psi$-Caputo fractional derivative
by: K. Oufkir, et al.
Published: (2025-08-01) -
Ultrasound-derived fat fraction: a novel approach for assessing Wilson’s disease-related hepatic steatosis
by: Li Yan, et al.
Published: (2025-07-01)