Harnessing Nature‐Derived Sustainable Materials for Electrochemical Energy Storage: Unveiling the Mechanism and Applications

Abstract Recently, research all over the world is being carried out to develop eco‐friendly supercapacitors (SCs) using biopolymeric materials like proteins or polysaccharides. These polymers offer these innovative energy storage devices' sustainability and recyclability, flexibility, lightweig...

Full description

Saved in:
Bibliographic Details
Main Authors: Naman Sharma, Kirti Mishra, Nirankar Singh, Samarjeet Singh Siwal, Phil Hart, Vijay Kumar Thakur
Format: Article
Language:English
Published: Wiley-VCH 2025-01-01
Series:Macromolecular Materials and Engineering
Subjects:
Online Access:https://doi.org/10.1002/mame.202400129
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Recently, research all over the world is being carried out to develop eco‐friendly supercapacitors (SCs) using biopolymeric materials like proteins or polysaccharides. These polymers offer these innovative energy storage devices' sustainability and recyclability, flexibility, lightweight, and steady cycling performance—all crucial for utilizations involving wearable electronics and others. Given its abundance and extensive recycling behavior, cellulose is one of the most sustainable natural polymers requiring special attention. The paper discusses the various types of cellulose‐based materials (CBMs), including nanocellulose, cellulose derivatives, and composites, as well as their synthesis methods and electrochemical properties. The review also highlights the performance of CBMs in SC applications, including their capacitance, cycling stability, and rate capability, along with recent advances in modifying the materials, such as surface modification and hybrid materials. Finally, the proposed topic is concluded with the current challenges and future prospects of CBMs for SC applications.
ISSN:1438-7492
1439-2054