Time-Domain Simulation of Coupled Motions for Five Fishing Vessels Moored Side-by-Side in a Harbor
With the rapid development and accelerated utilization of marine resources, multi-body floating systems have become extensively used in practical applications. This study examines the coupled motions of a side-by-side anchoring system for five fishing vessels in a harbor using ANSYS-AQWA. The system...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Journal of Marine Science and Engineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-1312/13/2/307 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the rapid development and accelerated utilization of marine resources, multi-body floating systems have become extensively used in practical applications. This study examines the coupled motions of a side-by-side anchoring system for five fishing vessels in a harbor using ANSYS-AQWA. The system is connected by hawsers and equipped with fenders to reduce collisions between the vessels. It is designed to operate in the sheltered wind-wave combined environment within Ningbo Zhoushan Port, China. Considering the diverse types and quantities of fishing vessels in the anchorage area, this paper proposes a mixed arrangement of three large-scale fishing vessels in the middle and two small-scale vessels on both sides. The time-domain analysis is performed on this system under the combined effects of wind and waves, calculating the motion responses of the five fishing vessels along with the mechanical loads at the hawsers, fenders, and moorings. The results indicate that the maximum loads on these mechanical components remain well within the safe working limits, ensuring reliable operation. In addition, the impact of varying wind-wave angles on the coupled motions of the fishing vessel system are studied. As the wind-wave angle increases, the surge motion of the fishing vessels gradually decreases, while the sway motion intensifies. The forces on the hawsers, fenders, and mooring system exhibit distinct characteristics at different angles. |
|---|---|
| ISSN: | 2077-1312 |